

Leitor RF-CLASSIC

O leitor e gravador para cartões 13.56MHz, ISO 14443A, RF-CLASSIC é destinado aos Integradores de Moedeiros Eletrônicos, Validadores de Transações e aplicações complexas

De fácil uso, ele possui menu de comandos de acesso ao cartão simples e minemônico. Oferecido em placas ou totalmente encapsulado com resina epóxi podendo ser utilizados em ambientes internos e externos.

Proteção contra sobre-tensão, eletricidade estática e circuito de proteção contra travamento de funcionamento.

Garantia de 1 ano. Tecnologia e fabricação nacional. Tranquilidade para seu projeto.

1) Especificações:

- Suporta o Cartões 13.56Mhz ISO 14443 A de 1K, UL e 4K
- Capaz de ler e escrever no chip 13.56Mhz ISO 14443 A de 1K, 4K e UL
 - o Opcional MIFB Suporte ao CTS256B (ISO 14443 B)
- Freqüência de Operação de 13,56 MHz
- Antena inclusa com alcance de até 8 cm
- Interface RS 232
 - Opcional USB Interface USB (com Driver compatível com Windows 7 e superior)
- Tensão de Alimentação: 5 à 14 Vdc, 80 mA
 - Opcional 5V de 4,5 à 5,5 Vdc, 80 mA

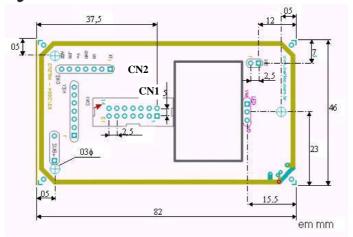
Dimensões: 110,0x51,0x18,5 mm

- Temperatura comercial
- Encapsulamento com espaço que permite a colocação de logo plástico do integrador
 - o Opcional Placa módulo sem encapsulamento

Importante: No caso de necessitar de opcionais, especificá-los no pedido.

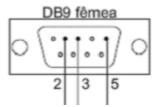
Leitor Parede

Dimensões do Módulo Parede


Posição do centro dos furos 10,0x25,5 mm

100
63
90
43

Leitor Mesa dim 116 x 62 x 23


Dimensões e descrição dos pinos de saída da placa OEM Dimensões: 82 x 46 x 13 mm

Col	nector	Cabo modelo		
CN1	CN2	parede	Descrição	Função
1	4	Preto	NEG	Negativo da alimentação
2	5	Vermelho	VCC	Positivo da alimentação 5 à 14V DC, 80mA
3	2	NC	NC	
4	-	Azul	NC	
5	-	Marrom	NC	
6	-	Violeta	NC	
7	3	Cinza	RX RS232	Entrada de sinal serial RS232
8	1	Amarelo	TX RS232	Saída de sinal serial RS232
9	-	Laranja	NC	
10	-	Branco	NC	
11	-	Verde	NC	
12	-	NC	NC	
13	-	NC	NC	
14	-	NC	NC	

2) Configuração do Leitor

Ligação serial RS 232

PLACA	DB9
GND	5
RDI	3
TXO	2

- 1) Conectar o leitor no PC através de porta RS232 e abrir a janela Hiper Terminal (9600, 8, n, 1, n).
- 2) Ligar o leitor à alimentação. Imediatamente o leitor mostrá a versão de FW atual:

13.56Mhz V2.1-A - INELTEC

3) Logo em seguida ele entra no modo de leitura contínua e para passar para o modo comando é só apertar qualquer tecla.

OBS.: Os comandos de configuração só entram em vigor após desligar e religar o leitor e devem ser feitos por pessoas experientes, pois há o risco de se comprometer a funcionalidade do leitor.

Mapa de endereços da eeprom de configuração

	mapa ao onao ogo o aa oopi om ao oo mga agao		
Endereço	Descrição		
00h a 03h	Nro Serial do Leitor (apenas leitura)		
04h	ID para Comunicação Binária. Validos valores de 01h a feh		

05h	Define tipo de protocolo e alguns outros comportamentos
06h	Baud Rate: Define velocidade de Comunicação
07h a 0fh	Reservado
10h a 13h	Uso livre

Para acessar a eeprom de configuração são usados os comandos "RE" e "WE".

Exemplo para lêr a posição 04 (ID): RE04

Exemplo para escrever o valor "03" na posição 04: WE0403<cr>>

O **comando** "**WE**" deve ser terminado com o caracter **<cr>** para diferenciar de escrita no bloco **E0** de cartão.

Em modo binário o comando "WE" é aceito com ou sem <cr>>.

Comportamentos de funcionamento (posição 05h)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Reservado	Reservado	Reservado	Reservado	Timeout	Reservado	Modo	Modo
				Binario		Binario	Contínuo

Modo Contínuo: Válido apenas em modo ASCII (**não Binário**). Se em 1: Transmite contínuamente o nro serial do um cartão de proximidade presente no campo do leitor.

Modo Binário: em 1: Comunicação em modo binario.

Timeout Binário: em 1: Espera de no máximo 100ms pelo ETX em modo binário.

Para o comando **WS** (escrita de 256 bytes), o timeout é de 300ms.

Velocidade de Comunicação (posição 06h)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Reservado	Reservado	Reservado	Reservado	Reservado	Baud2	Baud 1	Baud 0

Valores de Baud Rate: 000 =9600 ; 001=19200 ; 010=57600 ; 011=115200, 100=38400.

3) Menu de Comandos

Comandos de Cartão

Comando	Descrição	Resposta ok	Erros
С	Leitura contínua do ID de cartões	ID com 4 a 7 bytes	
S	Seleciona um cartão para operações	ID com 4 a 7 bytes	N
M	Seleciona cartão/lista de cartões para operações	ID com 4 a 7 bytes	N
L	Login(Autentica): L+ setor+ tipo chave + chave	L	N, F, E
R	Read – Lê um bloco(00 - 3F= cartao 1k)/(00-FF=cartao4k)	16 bytes Hexa	N, F, I
W	Write – Escreve em um bloco (00h a FFh)	16 bytes Hexa	X, F, U, N
RV	Read Value – Lê um bloco de valor(00h a FFh)	4 bytes Hexa	N, F, I
WV	Write Value – Escreve valor em um bloco (00h a FFh)	4 bytes Hexa	X, F, U, N, I
RS	Leitura direta de 1 ou 16(modo binário) blocos de 16 bytes	16 ou 256 hexa	N, F, I
WS	Escrita direta de 1 a 16 blocos de 16 bytes	Soma16 + W	X, F, U, N
+	Incrementa Bloco de valor	4 bytes Hexa	X, F, N, I
-	Decrementa Bloco de valor	4 bytes Hexa	X, F, N, I, E
=	Copia Bloco de valor de (00h a FFh) para (00h a FFh)	4 bytes Hexa	X, F, N, I

Comandos de Leitor

Comando	Descrição	Resposta ok	Erros
Х	Reseta o Leitor	13.56Mhz Vx.y	
WM	Write Master Key – Armazena chave de Login no Leitor	6 bytes Hexa	
Pon/Poff	Liga/Desliga a Antena do leitor	Р	
Pw01	Liga Led Vermelho	01	
Pw02	Liga Led Verde	02	

Pw04	Liga Buzzer	04	
Pw03	Liga Leds Vermelho e Verde	03	
Pw05	Liga Led Vermelho e Buzzer	05	
Pw06	Liga Led Verde e Buzzer	06	
Pw07	Liga Leds Vermelho e Verde e Buzzer	07	
Pw00	Desliga tudo	00	
Pr	Lè status dos Leds e Buzzer	0x (x = 0 à 7)	
٧	Mostra a versão do Software do Leitor	13.56Mhz Vx.y	
G	Mostra ID de comunicação do Leitor	1 byte	

Obs: Os comandos são aceitos em maiúsculo ou minúsculo.

Significado das Respostas com Erro:

- N Sem cartão no campo do leitor
- F Falha na operação
- E Chave interna inválida para Login(armazenada pelo comando WM)
- I Tentativa operação com valor em campo não configurado
- X Sem leitura após escrita
- U Leitura após escrita não confere
- E Falha em decremento(valor a decrementar inferior ao crédito)
- ? Comando não reconhecido

Resumo da estrutura de um Cartão 13.56Mhz:

Cartão de 1k bytes:São 16 Setores (00 a 0F) com 4 blocos de 16 bytes

Cartão de 4k bytes:São 32 Setores(00 a 1F) com 4 blocos de 16 bytes + 7 setores com 16 blocos de 16 bytes

O ultimo bloco de cada setor contem: <6 bytes=**chave A**> <4 bytes=**flags**> <6 bytes=**chave B**> Exemplos de Flags:

FF 07 80 FF = Escrita/leitura permitida com chave A, chave B sem uso.

78 77 88 FF = Escrita/leitura com chave B, apenas leitura com chave A

48 77 8B FF = Escrita/leitura com chave B nos 4 blocos; Leitura com Chave A

Apenas decrementos de valor com chave A nos dois primeiros blocos

4) Exemplos de uso dos Comandos

Escrita e leitura num cartão

Comandos	Significado	Respostas
S	Seleciona um cartão	D2B705BA (ID de um cartão)
L01FF<^> (espaço)	Login no setor 01, chave Philips	L
R04	Lê o primeiro bloco do setor 1	< 16 bytes hexa >
w06+16 bytes	Escreve no 3º bloco do setor 1	< os mesmos 16 bytes escritos>
w07A1A2A3A4A5A6487 78BFFB1B2B3B4B5B6	Muda chaves e condições de acesso do setor 1: Blocos 04 e	Erro "U": A chave anterior (FF) foi mudada para:
	05 =valor; bloco 6 =dados	Chave A=a1a2a3a4a5a6 Chave B=b1b2b3b4b5b6
R07	Leitura do bloco 07(chaves do setor 01)	00000000000048778Bff000000000000000000000000000000000
S	Seleciona novamente	D2B705BA *Apos o Select, apenas novas chaves
L01BBB1B2B3B4B5B6	Login setor 01, nova chave B	L
Wv040000300	Formata bloco 4 como valor com 768 creditos (300h)	00000300
-040000064	Decrementa 100 creditos	0000029C
=0405	Backup do bloco 4 no bloco 5	0000029C
rv05	Leitura do valor do bloco 5	0000029C

Gravação de chaves na EEprom do leitor para uso com o comando de Login

Comandos	Significado	Respostas
wm001A2A3A4A5A6A	Grava chave tipo A (usar Lxx10)	1A2A3A4A5A6A
wm22A0B1C2D3E4F5	Grava chave tipo B (usar Lxx32)	A0B1C2D3E4F5

Variações do comando de autenticação (Login)

Comandos	Significado
L05FF<^> (espaço)	Login no setor 05, com chave FFFFFFFFFF (Cartão novo Philips)
L1DAA<^> (espaço)	Login no setor 1D, com chave A0A1A2A3A4A5(Cartão novo Infineon)
L0110<^> (espaço)	Login no setor 01, com chave A, posição 10 (tipoA= 10 a 2F) da EEprom
L0032<^> (espaço)	Login no setor 00 , com chave B, posição 32 (tipoB= 30 a 4F) da EEprom
L12BBC0C1C2C3C4C5	Login no setor 12, com chave B: C0C1C2C3C4C5

Seleção com varios cartões no campo de leitura

Comandos	Significado	Respostas
M <cr></cr>	Obtenção de lista de ID dos cartões no campo	Um ID por linha+qte no final
M4D806725 <cr></cr>	Selecão do cartão com ID 4D806725	4D806725
M4D <cr></cr>	Selecão de um cartão com ID iniciando com 4D	4D806725

5) Comandos Macro

Os comando especiais RS e WS são usados para realizar leituras/escritas de 1 a 16 blocos de 16 bytes, com as operações e Seleção de cartão e Login(autenticação) em setor, fazendo parte do mesmo comando.

Comando de Leitura

Realiza a leitura de **256 bytes** (apenas 16 bytes em modo ASCII) de blocos de dados de um cartão. Os blocos de fim de setor(chaves e flags) não são inclusos na resposta.

Todos os setores devem ter a mesma chave de autenticação, que deve ser gravada em uma posição da eeprom (comando WM). Se for encontrado algum setor com chave diferente, a resposta é enviada apenas até aquele ponto, seguindo-se o código de erro e os números do setor e bloco onde foi realizado a última leitura.

Para apenas um cartão presente no campo de leitura: RSSxxcc

Para vários cart!oes presentes no campo de leitura: RSMxxcchhhhhhhh, onde:

xx = bloco inicial do cartão

cc = posição na memória de autenticação: chave tipo A= 10 a 2F; chave tipo B= 30 a 4F

hhhhhhh = ID de um dos cartões presentes no campo de leitura.

Os códigos de erro são os mesmos dos comandos individuais de Login, Seleção e leitura de bloco. Para uma leitura sem erro, no final dos bytes enviados é enviado a letra "R" seguida dos números do ultimo setor e bloco presente na resposta.

Comando de Escrita

Realiza a escrita de **16 a 256** bytes (apenas 16 em modo ASCII) de blocos de dados de um cartão. Os blocos de fim de setor(chaves e flags) são saltados na operação.

Todos os setores devem ter a mesma chave de autenticação, que deve ser gravada em uma posição da eeprom (comando WM). Se for encontrado algum setor com chave diferente, o comando retorna um código de erro, informando, logo após, o último setor e bloco onde foi realizada escrita.

Para apenas um cartão presente no campo de leitura: WSSxxcc< n * 256 bytes>

Para vários cart!oes presentes no campo de leitura: WSMxxcchhhhhhhhh< n * 256 bytes>, onde:

xx = bloco inicial do cartão

cc = posição na memória de auteticação: chave tipo A= 10 a 2F; chave tipo B= 30 a 4F

hhhhhhh = ID de um dos cartões presentes no campo de leitura.

< n * 16 bytes> = 16 a 256 bytes que serão gravados. Sempre em múltiplos de 16 bytes

Os códigos de erro são os mesmos dos comandos individuais de Login, Seleção e escrita de bloco. Para uma leitura sem erro, no final dos bytes enviados é enviado a letra "W" seguida dos números do ultimo setor e bloco onde foi realizada escrita.

6) Comunicação Em Modo Binário

Os comandos e respostas quando o leitor estiver configurado para comunicação em modo binário:

<STX> <ID> <Tamanho> <Resposta/Comando> <BCC> <ETX>

Onde:

- <STX> = Caracter ASCII 02h
- <ID> = Identificação do dispositivo(1 byte). Nas respostas das leitoras, <ID> = 00h.
- <Tamanho> = Quantidade bytes do campo <Resposta/Comando>
- <Resposta/Comando> = São os mesmos comandos e respostas do modo ASCII
- <BCC> = Operação XOR de todos os bytes dos campos <ID> ,<Tamanho> e <Resposta/Comando>
- <ETX> = Caracter ASCII 03h

Exemplo de comando e resposta:

Ler o bloco 4 de um cartão, numa leitora que tem o <ID>=25h:

02h	25h	02h	72h	04h	51h	03h
STX	ID	Tamanho	'r'	Nro Bloco	BCC	ETX

Resposta da Leitora, com cartão selecionado no campo de leitura:

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	·	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	4, 00	ou	,	00.0	0.0	<u> </u>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<u> </u>	, 40	· Oitai	и.						
02h	00h	10h	00h	65h	03h	E9h	00h	01h	00h	00h	00h	00h	00h	00h	00h	00h	00h	00h	9Eh	03H
STX	ID	Tam	D0	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12	D13	D14	D15	BCC	ETX

Resposta da Leitora, caso o cartao tenha sido removido do campo de leitura:

02h	00h	01h	4Eh	4Fh	03h
STX	ID	Tam	'N'	BCC	ETX

Obtenção de ID desconhecido

02h	0ffh	01h	67h	99h	03h
STX	ID	Tam	' g'	BCC	ETX

No modo binário pode-se obter o **ID** de comunicação de Leitor usando-se o comando "**g**", com o valor ffh na posição de ID:

Para facilitar a identificação de leitores num **barramento**, a resposta ao comando "g" é realizada com uma defasagem de tempo = (valor do ID) x • T ms . De acordo com a velocidade de comunicação, • T tem os valores: 8 ms (9600 bps); 4 ms (19200 bps); 2,2 ms(56k bps); 1,1ms (115k bps).

Especificações sujeitas a alterações sem aviso prévio