

Leitor **RFPremium**

O leitor e gravador, para cartões 13.56MHz, ISO 14443A, RFPremium é destinado aos Integradores de Controle de Acesso.

De fácil uso, ele é compatível com a grande maioria das controladoras do mercado.

Esse leitor pode ser configurado para acessar dados gravados em setor e bloco de cartões 13.56MHz escolhido pelo integrador, através de password também escolhido, para convertê-los em saídas Abatrack, Weigand ou Código de Barras, de vários formatos. Pode ser configuarado para ler o Id-code, se assim o preferir.

. O RFPremium pode executar comandos de escrita e leitura no modo paralizado, permitindo, dessa forma, os integradores desenvolverem programas para controle de acesso avançado.

Possui circuito eletrônico totalmente encapsulado com resina epóxi podendo ser utilizados em ambientes internos e externos. Sendo também oferecido na versão placa.

Proteção contra sobre-tensão, eletricidade estática e circuito de proteção contra travamento de funcionamento.

Garantia de 1 ano. Tecnologia e fabricação nacional. Tranquilidade para seu projeto.

1) Especificações:

- Suporta o Cartões 13.56MHz ISO 14443 A de 1K, UL e 4K
- Capaz de ler e escrever no chip 13.56MHz ISO 14443 A de 1K, 4K e UL.
- Freqüência de Operação de 13,56 MHz •

Antena inclusa com alcance de até 8 cm

- Emula os seguintes tipos de interfaces (configurável: Usar SW aplicativo ExemploVB):
 - Wiegand 26 bits ou 32 bits
 - 4 tipos de Abatrack II 14 dígtos
 - Código de Barras 2 de 5 intercalado, módulo 11 ou não •
 - RS 232, código Hexa repetitivo ou uma única vez
 - Também fornecido nos modelos:
 - o USB Interface USB 2.0
 - **TCL** Interface PS2 para Teclado
- Tensão de Alimentação: 5 à 14 Vdc, 80 mA
 - o Opcional 5V de 4,5 à 5,5 Vdc, 80 mA
- Temperatura de operação: de -5°C a 60°C e umidade relativa do ar de 0 a 85%.
- Encapsulamento com espaco que permite a colocação de logo plástico do integrador 0
 - Opcional Placa módulo sem encapsulamento

Importante: No caso de necessitar de opcionais, especificá-los no pedido.

Leitor Parede

Dimensões do Módulo Parede

Leitor Mesa dim 116 x 62 x 23 mm

Dimensões: 110,0x51,0x18,5 mm Posição do centro dos furos 10,0x25,5 mm

Dimensões e descrição dos pinos de saída da placa OEM Dimensões: 82 x 46 x 13 mm

Conector Cabo modelo

> RFID Cartões Comerciais Ltda Phone: +55 19 3258-5545 Rua Sapopemba, 25 cep 13104-170 Campinas – SP email: rfidcc@rfidcc.com.br web site: www.rfidcc.com.br

💳 Tecnologia Brasileira

CN1	CN2	Parede	Descrição	Função
1	4	Preto	NEG	Negativo da alimentação
2	5	Vermelho	VCC	Positivo da alimentação 5 à 14V DC, 80mA
3	2	NC	NC	NC
4	-	Azul	BUZ	Controle do Beeper
5	-	Marrom	LED VD	Controle do LED Verde
6	-	Violeta	LED VM	Controle do LED Vermelho
7	3	Cinza	RX RS232	Entrada de sinal serial RS232
8	1	Amarelo	TX RS232	Saída de sinal serial RS232
9	-	Laranja	PC	Presença de cartão
10	-		ABA Track	CLK - Clock para o modo ABA Track
		Branco	Wiegand	Data1 - Dado 1 para o modo Wiegand
			Cód. Barras	Não usado – Cód. Barras
11	-		ABA Track	Data - Data para o modo ABA Track
		Verde	Wiegand	Data0 - Dado 0 para o modo Wiegand
			Cód. Barras	Emulação Cód. Barras 2 de 5 intercalado
12	-	NC	NC	
13	-	NC	NC	
14	-	NC	NC	

2) Configuração do Leitor

2.1) Ligação serial RS 232

GND 5	\circ $(\cdot \cdot \cdot \cdot \cdot)$
RDI 3	
TXO 2	2 3 5

- 1) Conectar o leitor no PC através de porta RS232 e abrir a janela Hiper Terminal (9600, 8, n, 1, n).
- Ligar o leitor à alimentação. Imediatamente o leitor mostra a versão de FW atual e configuração: 13.56MHz V2.2-A

MFPremium 3.1, flags:, Paralizado, Nro serie: XC1092

3) Logo em seguida ele entra no modo de operação para o qual foi configurado.

2.2) Usando o SW Exemplo-VB

RFID Cartões Comerciais Ltda Phone: +55 19 3258-5545 Rua Sapopemba, 25 cep 13104-170 Campinas – SP email: rfidcc@rfidcc.com.br web site: www.rfidcc.com.br

🗧 Tecnologia Brasileira

- 1) Fechar o Hiper Terminal e abrir o SW Exemplo-VB. Clicar no canto superior esquerdo o botão Conf. Leitor.
- Na tela Programa Leitor, coloque o leitor no modo paralizado clicando em "Modo Comandos", desligue e ligue o leitor para ele mudar de modo.
- Retorne à tela anterior, Leitura e Gravação de Cartões 13.56MHz. Colocando o cursor do mouse no botão ou janela de interesse que aparecerão as explicações relacionadas.

2.3) Guia rápido para gravação de Cartões 13.56MHz 1K (standard):

- 1) Fechar o Hiper Terminal e abrir o SW Exemplo-VB. Clicar no canto superior esquerdo o botão Conf. Leitor.
- 2) No módulo **Chaves para Autenticação**, selecione a chave de acesso para o cartão, por exemplo, Novo(Philips), no caso de seu cartão usar chip Philips e com chaves de fábrica.
- 3) No módulo Bloco de Flags(Proteção), escolha o Setor (preferncialmente use setor 00), Chave A, Chave B e em Flags use 78 77 88 FF.
- 4) Clique o botão Gravar, e apresente o cartão ao leitor até obter a confirmação. A mensagem de resposta será "00000000000787788FF00000000000 Erro na operação". Isso ocorre pois a chave gravada não é acessível, aparecendo como 00000000000.
- 5) Grave as chaves em todos os cartões apertando o botão Gravar e apresentando os cartões.
- 6) No módulo **Chaves para Autenticação** selecione **Chave B** e coloque a "mesma chave B gravada nos cartões", no espaço logo abaixo.
- No módulo Blocos de Dados, coloque o mesmo Setor usado no módulo Bloco de Flags, escolha o Bloco (prefencialmente use bloco 1 para o Setor 00).
- Escreva o número do funcionário no espaço em branco. Clique em Gravar e apresente o cartão ao leitor. Repita para todos os cartões.

2,4) Para ir para a tela Programa Leitor, clicar no canto superior esquerdo o botão Conf. Leitor.

E na tela abaixo:

RFID Cartões Comerciais Ltda Phone: +55 19 3258-5545 Rua Sapopemba, 25 cep 13104-170 Campinas – SP email: <u>rfidcc@rfidcc.com.br</u> web site: <u>www.rfidcc.com.br</u>

RFIDCC Tecnologia Brasileira

🐂 Programa Leitor		_O×		
Prog. Leitor Conversor	Programa Chave Autenticação	Programa Leitor		
ABA Wiegand 26 FACILITY	CHAVE A	Modo		
© Wiegand 32 0	A0A1A2A3A4A5	Lomandos		
C Cod.Barras		Veloc.		
C Teclado PC		Comunic		
Total digitos_Bancos	B0B1B2B3B4B5	Baud Rate 💌		
14 0000	Posição na EEprom Grava	Modo Binário		
Setor Bloco	00 Chave	ID Binário 01		
0 01 Programa				
Apenas ID Mostra	Comandos diretos			
Controle Buzzer ext.				
Controle Led ext.	,			
Status Operação	Status Operação			
		Cancela Operação		

2.5) Programe as chaves de acesso:

- 1) Escreva as Chaves A e B que voce usou para gravar os cartões, escreva 20 na Posição na EEprom.
- 2) Clique o botão Grava Chave. Desligue e ligue o leitor para gravar as Chaves.
- 3) Escolha as opções de conversão na tela abaixo:
 - Abatrack
 - Wiegand (26, 32, 36)
 - Código de Barras
- 4) Dsmarque Apenas ID
- 5) Escolha o Facility Code se for o caso.
- 6) Se Abatrack ou Código de Barras, escolha o total de dígitos
- 7) Use o mesmo Setor e Bloco usados para gravar os números dos funcionários nos cartões.
- 8) Clicar a tecla **Programa** para programar (ou **Mostra** para pegar a linha de comando e programar através de um hyperterminal). **Desligue e ligue o leitor** para ele aceitar a configuração.
- 9) Repita itens de 1 a 8 para todos os leitores.

3) Menu de Comandos no modo Paralizado

Comandos de Cartão				
Comando	Descrição	Resposta ok	Erros	
С	Leitura contínua do ID de cartões	ID com 4 a 7 bytes		
S	Seleciona um cartão para operações	ID com 4 a 7 bytes	Ν	
L	Login(Autentica): L+ setor+ tipo chave + chave	L	N, F, E	
R	Read – Lê um bloco(00 - 3F= cartao 1k)/(00-FF=cartao4k)	16 bytes Hexa	N, F, I	
W	Write – Escreve em um bloco (00h a FFh)	16 bytes Hexa	X, F, U, N	
RV	Read Value – Lê um bloco de valor(00h a FFh)	4 bytes Hexa	N, F, I	
WV	Write Value – Escreve valor em um bloco (00h a FFh)	4 bytes Hexa	X, F, U, N, I	
+	Incrementa Bloco de valor	4 bytes Hexa	X, F, N, I	
-	Decrementa Bloco de valor	4 hytes Hexa	XENIE	

RFID Cartões Comerciais Ltda Phone: +55 19 3258-5545 Rua Sapopemba, 25 cep 13104-170 Campinas – SP email: <u>rfidcc@rfidcc.com.br</u> web site: <u>www.rfidcc.com.br</u>

Revisão 2.2 08/ 2020

RFIDCC

Tecnologia Brasileira

Copia Bloco de valor de (00h a FFh) para (00h a FFh)

X, F, N, I

4 bytes Hexa

Comandos de Leitor

Comando	Descrição	Resposta ok	Erros
Х	Reseta o Leitor	13.56MHz Vx.y	
WM	Write Master Key – Armazena chave de Login no Leitor	6 bytes Hexa	
Pon/Poff	Liga/Desliga a Antena do leitor	Р	
V	Mostra a versão do Software do Leitor	13.56MHz Vx.y	
G	Mostra ID de comunicação do Leitor	1 byte	

Obs: Os comandos são aceitos em maiúsculo ou minúsculo.

Significado das Respostas com Erro:

- N Sem cartão no campo do leitor
- F Falha na operação
- E Chave interna inválida para Login(armazenada pelo comando WM)
- I Tentativa operação com valor em campo não configurado
- X Sem leitura após escrita
- U Leitura após escrita não confere
- E Falha em decremento(valor a decrementar inferior ao crédito)
- ? Comando não reconhecido

Resumo da estrutura de um Cartão 13.56MHz:

Cartão de 1k bytes:São 16 Setores (00 a 0F) com 4 blocos de 16 bytes

Cartão de 4k bytes:São 32 Setores(00 a 1F) com 4 blocos de 16 bytes + 7 setores com 16 blocos de 16 bytes

O ultimo bloco de cada setor contem: <6 bytes=**chave A**> <4 bytes=**flags**> <6 bytes=**chave B**> Exemplos de Flags:

FF 07 80 FF = Escrita/leitura permitida com chave A, chave B sem uso.

78 77 88 FF = Escrita/leitura com chave B, apenas leitura com chave A

4) Exemplos de uso dos Comandos

Escrita e leitura num cartão

		-
Comandos	Significado	Respostas
S	Seleciona um cartão	D2B705BA (ID de um cartão)
L01FF <cr></cr>	Login no setor 01, chave Philips	L
R04	Lê o primeiro bloco do setor 1	< 16 bytes hexa >
w06+16 bytes	Escreve no 3º bloco do setor 1	< os mesmos 16 bytes escritos>
w07A1A2A3A4A5A6487	Muda chaves e condições de	Erro "U" : A chave anterior (FF) foi mudada
78BFFB1B2B3B4B5B6	acesso do setor 1: Blocos 04 e	para:
	05 =valor; bloco 6 =dados	Chave A=a1a2a3a4a5a6 Chave
		B=b1b2b3b4b5b6
R07	Leitura do bloco 07(chaves do	00000000000048778Bff000000000000
	setor 01)	Chaves foram protegidas, visivel apenas
		Flags
S	Seleciona novamente	D2B705BA *Apos o Select, apenas novas
		chaves
L01BBB1B2B3B4B5B6	Login setor 01, nova chave B	L
Wv040000300	Formata bloco 4 como valor	00000300
	com 768 creditos (300h)	
-040000064	Decrementa 100 creditos	0000029C

RFIDCC

Tecnologia Brasileira

=0405	Backup do bloco 4 no bloco 5	0000029C
rv05	Leitura do valor do bloco 5	0000029C

Gravação de chaves na eeprom do leitor para uso com o comando de Login

Comandos	Significado	Respostas
wm001A2A3A4A5A6A	Grava chave tipo A (usar Lxx10)	1A2A3A4A5A6A
wm22A0B1C2D3E4F5	Grava chave tipo B (usar Lxx32)	A0B1C2D3E4F5

Variações do comando de autenticação (Login)

Comandos	Significado
L05FF	Login no setor 05, com chave FFFFFFFFFFFF (Cartão novo Philips)
L1DAA <cr></cr>	Login no setor 1D, com chave A0A1A2A3A4A5(Cartão novo Infineon)
L07 <cr></cr>	Login no setor 07, com chave A0A1A2A3A4A5(Cartão novo Infineon)
L0110	Login no setor 01, com chave A, posição 10 (tipoA= 10 a 2F) da EEprom
L0032	Login no setor 00 , com chave B, posição 32 (tipoB= 30 a 4F) da EEprom
L12BBC0C1C2C3C4C5	Login no setor 12, com chave B : C0C1C2C3C4C5

Especificações sujeitas a alterações sem aviso prévio